Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.
نویسندگان
چکیده
During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll --> pheophytin --> pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.
منابع مشابه
Different Mechanisms Are Responsible for Chlorophyll Dephytylation during Fruit Ripening and Leaf Senescence in Tomato1[W][OPEN]
Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesiumand phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes involv...
متن کاملDifferent mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato.
Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesium- and phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes invo...
متن کاملA new chlorophyll degradation pathway.
Chlorophyll degradation is vital during leaf senescence and fruit ripening, as it allows for recycling of nitrogen and other nutrients and for protection from buildup of phototoxic chlorophyll intermediates (Hörtensteiner, 2006). The first steps in chlorophyll breakdown are the removal of the phytol tail (dephytylation) and the central Mg atom. It has been thought that dephytylation typically o...
متن کاملFunctional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass
Chlorophyll (Chl) degradation occurs naturally during leaf maturation and senescence, and can be induced by stresses, both processes involving the regulation of plant hormones. The objective of this study was to determine the functional roles and hormonal regulation of a gene encoding pheophytin pheophorbide hydrolyase (PPH) that catabolizes Chl degradation during leaf senescence in perennial g...
متن کاملChlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing.
Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2009